Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(36): 85292-85304, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37386218

RESUMO

The concept of the study resulted from numerous concerns around bisphenol A (BPA) and bisphenol S (BPS) in aquatic environments. In this study, river water and sediment microcosms highly polluted with bisphenols and bioaugmented with two BPs-removing bacterial strains were constructed. The study aimed to determine the rate of high-concentrated BPA and BPS (BPs) removal from river water and sediment microniches, and the effect of water bioaugmentation with bacterial consortium on the removal rates of these pollutants. Moreover, the impact of introduced strains and exposure to BPs on the structural and functional composition of the autochthonous bacterial communities was elucidated. Our findings indicate that the removal activity of autochthonous bacteria was sufficient for effectively BPA elimination and reducing BPS content in the microcosms. The number of introduced bacterial cells decreased continuously until day 40, and on consecutive sampling days, no bioaugmented cells were detected. Sequencing analysis of the total 16S rRNA genes revealed that the community composition in bioaugmented microcosms amended with BPs differed significantly from those treated either with bacteria or BPs. A metagenomic analysis found an increase in the abundance of proteins responsible for xenobiotics removal in BPs-amended microcosms. This study provides new insights into the effects of bioaugmentation with a bacterial consortium on bacterial diversity and BPs removal in aquatic environments.


Assuntos
Bactérias , Compostos Benzidrílicos , RNA Ribossômico 16S/metabolismo , Biodegradação Ambiental , Bactérias/metabolismo , Compostos Benzidrílicos/análise , Água/análise
2.
Front Microbiol ; 13: 902181, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35722319

RESUMO

Plants have co-evolved with diverse microorganisms that have developed different mechanisms of direct and indirect interactions with their host. Recently, greater attention has been paid to a direct "message" delivery pathway from bacteria to plants, mediated by the outer membrane vesicles (OMVs). OMVs produced by Gram-negative bacteria play significant roles in multiple interactions with other bacteria within the same community, the environment, and colonized hosts. The combined forces of innovative technologies and experience in the area of plant-bacterial interactions have put pressure on a detailed examination of the OMVs composition, the routes of their delivery to plant cells, and their significance in pathogenesis, protection, and plant growth promotion. This review synthesizes the available knowledge on OMVs in the context of possible mechanisms of interactions between OMVs, bacteria, and plant cells. OMVs are considered to be potential stimulators of the plant immune system, holding potential for application in plant bioprotection.

3.
Biodegradation ; 32(1): 1-15, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33205349

RESUMO

Bisphenol A (BPA) is an endocrine disrupting chemical. Its extensive use has led to the wide occurrence of BPA in various environmental ecosystems, at levels that may cause negative effects to the ecosystem and public health. Although there are many bacteria able to BPA utilization, only a few of them have a strong capacity for its biodegradation. Therefore, it is important to search for new bacteria strains, investigate their BPA biodegradation ability and potential effect of pH and other organic compounds on the process. These tasks have become the object of the present study. The results of our research show that for the newly isolated strains Acinetobacter sp. K1MN and Pseudomonas sp. BG12 after 15 days, with an initial BPA concentration of 100 mg L- 1, the highest BPA removal was achieved at pH 8, while sodium glutamate as a biostimulant best accelerated BPA degradation. Kinetic data for BPA biodegradation by both strains best fitted the Monod model. The specific degradation rate and the half saturation constant were estimated respectively as 8.75 mg L- 1 day- 1 and 111.27 mg L- 1 for Acinetobacter sp. K1MN, and 8.6 mg L- 1 day- 1 and 135.79 mg L- 1 for Pseudomonas sp. BG12. The half-maximal effective concentration (EC50) of BPA for Acinetobacter sp. K1MN was 120 mg L- 1 and for Pseudomonas sp. BG12 it was 123 mg L- 1. The toxicity bioassay (Microtox test) showed that elimination of BPA by both strains is accompanied by reduction of its toxic effect. The ability of tested strains to degrade BPA combined with their high resistance to this xenobiotic indicates that Acinetobacter sp. K1MN and Pseudomonas sp. BG12 are potential tools for BPA removal during wastewater treatment plant.


Assuntos
Acinetobacter , Pseudomonas , Compostos Benzidrílicos/toxicidade , Biodegradação Ambiental , Ecossistema , Fenóis
4.
Environ Sci Pollut Res Int ; 27(32): 39958-39976, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32803603

RESUMO

Endocrine-disrupting chemicals (EDC) are a wide group of chemicals that interfere with the endocrine system. Their similarity to natural steroid hormones makes them able to attach to hormone receptors, thereby causing unfavorable health effects. Among EDC, bisphenol A (BPA), bisphenol S (BPS), and nonylphenol (NP) seem to be particularly harmful. As the industry is experiencing rapid expansion, BPA, BPS, and NP are being produced in growing amounts, generating considerable environmental pollution. White rot fungi (WRF) are an economical, ecologically friendly, and socially acceptable way to remove EDC contamination from ecosystems. WRF secrete extracellular ligninolytic enzymes such as laccase, manganese peroxidase, lignin peroxidase, and versatile peroxidase, involved in lignin deterioration. Owing to the broad substrate specificity of these enzymes, they are able to remove numerous xenobiotics, including EDC. Therefore, WRF seem to be a promising tool in the abovementioned EDC elimination during wastewater treatment processes. Here, we review WRF application for this EDC removal from wastewater and indicate several strengths and limitations of such methods.


Assuntos
Ecossistema , Águas Residuárias , Compostos Benzidrílicos , Fungos , Lacase , Fenóis , Sulfonas
5.
Chemosphere ; 201: 214-223, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29524822

RESUMO

Numerous data indicate that most of bisphenols (BPs) are endocrine disrupters and exhibit cytotoxicity, neurotoxicity, genotoxicity and reproductive toxicity against vertebrates. Nevertheless, they are widely applied in material production what result in their ubiquitous occurrence in ecosystems. While BPA is the most frequently detected in environment, BPAF, BPF and BPS are also often found. Ecosystem particularly exposed to BPs pollution is industrial and municipal wastewater being a common source of BPA in river waters. Different techniques to remove BPs from these ecosystems have been applied, among which biodegradation seems to be the most effective. In this review the current state of knowledge in the field of BPs application, distribution in the environment, effects on animal and human health, and biodegradation mediated by bacterial populations in wastewater treatment plants and rivers is presented.


Assuntos
Bactérias , Compostos Benzidrílicos/toxicidade , Biodegradação Ambiental , Disruptores Endócrinos/toxicidade , Fenóis/toxicidade , Rios/química , Águas Residuárias/microbiologia , Purificação da Água/métodos , Animais , Humanos
6.
Int J Med Microbiol ; 305(6): 544-52, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26188838

RESUMO

The lipopolysaccharide (LPS) is involved in the interaction between Gram-negative pathogenic bacteria and host. Mannose-binding lectin (MBL), complement-activating soluble pattern-recognition receptor targets microbial glycoconjugates, including LPS. We studied its interactions with a set of Yersinia enterocolitica O:3 LPS mutants. The wild-type strain LPS consists of lipid A (LA) substituted with an inner core oligosaccharide (IC) which in turn is substituted either with the O-specific polysaccharide (OPS) or the outer core hexasaccharide (OC), and sometimes also with the enterobacterial common antigen (ECA). The LPS mutants produced truncated LPS, missing OPS, OC or both, or, in addition, different IC constituents or ECA. MBL bound to LA-IC, LA-IC-OPS and LA-IC-ECA but not LA-IC-OC structures. Moreover, LA-IC substitution with both OPS and ECA prevented the lectin binding. Sequential truncation of the IC heptoses demonstrated that the MBL targets the IC heptose region. Furthermore, microbial growth temperature influenced MBL binding; binding was stronger to bacteria grown at room temperature (22°C) than to bacteria grown at 37°C. In conclusion, our results demonstrate that MBL can interact with Y. enterocolitica LPS, however, the in vivo significance of that interaction remains to be elucidated.


Assuntos
Proteínas de Bactérias/genética , Lectina de Ligação a Manose/sangue , Antígenos O/metabolismo , Yersinia enterocolitica/crescimento & desenvolvimento , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Humanos , Yersinia enterocolitica/genética
7.
Arch Immunol Ther Exp (Warsz) ; 63(4): 287-98, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25682593

RESUMO

The microorganisms that inhabit humans are very diverse on different body sites and tracts. Each specific niche contains a unique composition of the microorganisms that are important for a balanced human physiology. Microbial cells outnumber human cells by tenfold and they function as an invisible organ that is called the microbiome. Excessive use of antibiotics and unhealthy diets pose a serious danger to the composition of the microbiome. An imbalance in the microbial community may cause pathological conditions of the digestive system such as obesity, cancer and inflammatory bowel disease; of the skin such as atopic dermatitis, psoriasis and acne and of the cardiovascular system such as atherosclerosis. An unbalanced microbiome has also been associated with neurodevelopmental disorders such as autism and multiple sclerosis. While the microbiome has a strong impact on the development of the host immune system, it is suspected that it can also be the cause of certain autoimmune diseases, including diabetes or rheumatoid arthritis. Despite the enormous progress in the field, the interactions between the human body and its microbiome still remain largely unknown. A better characterization of the interactions may allow for a deeper understanding of human disease states and help to elucidate a possible association between the composition of the microbiome and certain pathologies. This review focuses on general findings that are related to the area and provides no detailed information about the case of study. The aim is to give some initial insight on the studies of the microbiome and its connection with human health.


Assuntos
Microbiota , Acne Vulgar/microbiologia , Artrite Reumatoide/microbiologia , Aterosclerose/microbiologia , Transtorno Autístico/microbiologia , Dermatite Atópica/microbiologia , Diabetes Mellitus Tipo 1/microbiologia , Neoplasias Gastrointestinais/microbiologia , Homeostase , Humanos , Sistema Imunitário , Doenças Inflamatórias Intestinais/microbiologia , Esclerose Múltipla/microbiologia , Obesidade/microbiologia , Psoríase/microbiologia , Pele/imunologia , Pele/microbiologia
8.
Microbiology (Reading) ; 161(Pt 1): 219-227, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25406452

RESUMO

Enterobacterial common antigen (ECA) is a polysaccharide present in all members of Enterobacteriaceae anchored either via phosphatidylglycerol (PG) or LPS to the outer leaflet of the outer membrane (ECAPG and ECALPS, respectively). Only the latter form is ECA-immunogenic. We previously demonstrated that Yersinia enterocolitica O : 3 and its rough (O-specific polysaccharide-negative) mutants were ECA-immunogenic, suggesting that they contained ECALPS; however, it was not known which part of the LPS core region was involved in ECA binding. To address this, we used a set of three deep-rough LPS mutants for rabbit immunization. The polyvalent antisera obtained were: (i) analysed for the presence of anti-LPS and anti-ECA antibodies; (ii) treated with caprylic acid (CA) to precipitate IgM antibodies and protein aggregates; and (iii) adsorbed with live ECA-negative bacteria to obtain specific anti-ECA antisera. We demonstrated the presence of antibodies specific for both ECAPG and ECALPS in all antisera obtained. Both CA treatment and adsorption with ECA-negative bacteria efficiently removed anti-LPS antibodies, resulting in specific anti-ECA sera. The LPS of the ECALPS-positive deepest-rough mutant contained only lipid A and 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) residues of the inner core, suggesting that ECALPS was linked to the Kdo region of LPS in Y. enterocolitica O : 3.


Assuntos
Antígenos de Bactérias/imunologia , Lipopolissacarídeos/imunologia , Yersinia enterocolitica/imunologia , Animais , Anticorpos/imunologia , Antígenos de Bactérias/química , Soros Imunes , Lipopolissacarídeos/química , Mutação , Coelhos , Sorotipagem , Yersinia enterocolitica/classificação , Yersinia enterocolitica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...